SUVAT Equations

In all questions, ignore air resistance and friction where appropiate.

i. A train is initially travelling at $\mathbf{2 0 m} / \mathrm{s}$. It accelerates at $5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for $\mathbf{1 0}$ seconds. What is its new speed?
ii. A train is initially stationary. After 20 seconds, it is travelling at $\mathbf{3 0 m} / \mathrm{s}$.

- What was its accelaration?
- How far as the car travelled in those 20 seconds?
iii. A projectile is launched from Earth with an initial velocity $100 \mathrm{~m} / \mathrm{s}$, directly upward.
- What is the projectiles maximum altitude before falling back to Earth?
- How long does it take it to reach that maximum height?
iv. An althete completes the 100 m sprint in 9.85 seconds. Assuming they are constanly accelerating throughout the duration of the race, what must that acceleration have been?
v. A ball is held by a string at a height above the ground and then released.
- The ball is held at 40 m above the ground and then released. How long does it take for the ball to reach the ground?
- The ball is now reset so it is held above the ground again. However, this time it is held at a height of x metres above the ground. When released it hits the ground after 3.5 seconds, at a velocity of $30 \mathrm{~m} / \mathrm{s}$. Find the value of x.
vi. A supertanker of mass $4.0 \times 10^{8} \mathbf{~ k g}$ is cruising in the Atlantic at an initial speed of $4.5 \mathrm{~m} / \mathrm{s}$. It takes one hour to come to rest.
- Assuming that the force slowing the tanker is constant, calculate the deceleration of the tanker.
- How far does the tanker travel whilst coming to a stop?

