## Stationary Points

i. The curve $C$ has equation

$$
f(x)=8 x-x^{2}
$$

- Find the co-ordinates of the stationary points of C .
- Is this stationary point a maximum or a minimum?
ii. - Calculate $f^{\prime}(x)$ for the function $f(x)=x^{3}+2 x^{2}-5$.
- Hence, calculate $f^{\prime \prime}(x)$.
- Find the values of $x$ where $f(x)$ is stationary.
- Determine whether each stationary point is a minimum or a maximum.
iii. The curve $C$ has equation:

$$
y=2 x^{3}-5 x^{2}-4 x+2
$$

- Find $\frac{d y}{d x}$.
- Use the result from above, find the coordinates of the turning points of $C$.
- Find $\frac{d^{2} y}{d x^{2}}$.
- Hence, or otherwise, determine the nature of the turning points of $C$.
iv. An oil drum has length $x \mathbf{c m}$. The ends are circles with radii $r \mathbf{c m}$ each, with $r>0$. The capacity of the barrel is $100 \mathrm{~cm}^{3}$.
- The drum is made out of metal. Show that the amount of metal needed to produce the barrel (its surface area) is given by:

$$
A=2 \pi r^{2}+\frac{200}{r}
$$

- Use calculus to find the value of $r$ for which $A$ is maximised.

- What is the maximum area of metal needed to produce the drum?

