Radians

i. Convert the following degrees into radians:

- 90°
- 720°
- 60°
- 320°
- 120°
- 49°
- 160°
- 1°
- 30°
- 1000°
ii. Convert the following radians into degrees:
- $\pi \mathrm{rad}$
- $\pi / 4 \mathrm{rad}$
- $3 \pi \mathrm{rad}$
- 1 rad
- 3 rad
- $\frac{3 \pi}{4} \mathrm{rad}$
- $\frac{7 \pi}{2} \mathrm{rad}$
- $\frac{\pi}{5} \mathrm{rad}$
- $\frac{1}{3} \mathrm{rad}$
iii. Find the area of the sector that has radius r, subtended by angle of $\frac{\pi}{3}$. Hence, show that the area of a circle is given by πr^{2}.
iv. The diagram below shows a wedge-shaped patio:
- Given that the area of the patio is $9 \mathrm{~m}^{2}$, find the length $A C$.
- The owner of the house wants to put up a fence along the edge $B C$. What length of fencing is required to do this?
- Once putting the fence up, the owner decides he wants to enclose the entire patio with fencing. What will the total length of fencing be once this is complete?

