Factor Theorem \& Polynomials

i. Decide which of the following are factors of the function:

$$
f(x)=8 x^{4}-10 x^{3}-97 x^{2}+27 x+36
$$

- $(x+2)$
- $(x+3)$
- $(x-4)$
- $(3 x-2)$
- $(x+1)$
- $(2 x-1)$
- $(2 x+1)$
- $(4 x-3)$
ii. - Show that $(2 x+3)$ is a factor of $g(x)=2 x^{4}+7 x^{3}-20 x^{2}-19 x+30$.
- Hence, find the values of p, q, r, s such that $(2 x+3)\left(p x^{3}+q x^{2}+r x+s\right)=g(x)$.
- $(x-1)$ is also a factor of $g(x)$. Hence, factorise $g(x)$ completely.
iii. - Use trial and error to find one factor of:

$$
f(x)=x^{3}-2 x^{2}-5 x+6
$$

- Hence, factorise $f(x)$ fully.
iv. Given that $h(x)=2 x^{2}-5 x-1$:
- Divide $h(x)$ by $(x-3)$ using long division.
- Hence, show that $h(x)$ can be written in the form $(x-3)(a x+b)+c$, where a, b, c are integers.

