Binomial Expansion

Remember:

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n$$

- i. Write out the first 5 rows of Pascal's Triangle.
- ii. Using the nC_k button on your calculator, find the value of the following binomial coefficients.
 - \bullet $\binom{7}{3}$

ullet $\binom{7}{6}$

ullet $\binom{3}{1}$

ullet $\binom{6}{4}$

 \bullet $\binom{10}{4}$

- $\bullet \ \binom{17}{9}$
- iii. Use the factorial button on your calculator to find the value of the following expressions.
 - 7!

• 3!

• 8! - 4!

- $\frac{13!}{8!}$
- Use binomial expansion to expand $(1-2x)^4$.
 - \bullet Using your answer, calculate $(-3)^4$
- v. Expand out the bracket, by hand: $(2+3x)^3$
 - Using the binomial theorem, verify that your answer above is correct.
- vi. Expand and simplify:

$$(2+5x)^3 - (1-3x)^4$$