Surds

- i. Write each of the following expressions as a single surd
 - $\sqrt{5} \times \sqrt{6}$
 - $\sqrt{5} \div \sqrt{3}$
 - $\sqrt{2} \times \sqrt{10}$
 - $\frac{\sqrt{20}}{\sqrt{10}}$
 - $\sqrt{4}\sqrt{5}$
 - $\frac{\sqrt{100}}{\sqrt{25}}$
 - $10\sqrt{45} 5\sqrt{45}$
- ii. Rationalise the denominator of each of the following fractions
 - $\frac{2}{\sqrt{5}}$
 - $\bullet \ \frac{3}{\sqrt{9}}$
 - $\bullet \ \frac{2}{\sqrt{10}}$
 - $\frac{4}{\sqrt{4}}$
 - $\frac{2}{3-\sqrt{5}}$
- iii. Write the following surds in the form $a\sqrt{b}$
 - $\sqrt{200}$
 - $\sqrt{20}$
 - $\sqrt{98}$
 - $\sqrt{12}$
 - $\sqrt{48}$
- iv. Simplify the following expressions involving surds
 - $(5+\sqrt{6})(5-\sqrt{6})$
 - $(3+\sqrt{7})^2$
 - $(1+\sqrt{2})^2-(1-\sqrt{2})^2$
 - $(1+\sqrt{2})^2-(2\sqrt{2}-\sqrt{2})^2$