Sequences

- i. For each of the following n^{th} terms, write out the value of u_1,u_2,u_3 and u_{20} :
 - $u_n = 2n + 1$
 - $u_n = 4n + 5$
 - $u_n = 10n 4$
 - $u_n = \frac{2000}{2n}$
 - $u_n = \frac{n}{3}$

- $u_n = n^2 20$
- $u_n = 2n^2$
- $u_n = 1000 n$
- $u_n = \frac{25n}{10}$
- $u_n = (-1)^n$
- ii. A sequence is generated by the formula $u_n = an + b$. Given that $u_3 = 5$ and $u_5 = 15$, find the values of a and b.
- iii. A sequence is given by the formula $u_n = (4n-2)^2$. Given that for some k, $u_k = 100$, find the value of k.
- iv. Write out the value of u_2 and u_3 for each of the following recursively defined sequences:
 - $u_1 = 1,$ $u_{n+1} = 3(u_n) + 5$
 - $u_1 = 4$, $u_{n+1} = 2(u_n) - 4$
 - $u_1 = 10,$ $u_{n+1} = u_n + 5$
 - $u_1 = 6,$ $u_{n+1} = 5 - u_n$

- $u_1 = 4$, $u_{n+1} = (u_n)^2 - 10$
- $u_1 = 19,$ $u_{n+1} = 20 - 2(u_n)$
- $u_1 = 20,$ $u_{n+1} = \frac{u_n}{2} + 4$
- $u_1 = 15,$ $u_{n+1} = \frac{1}{u_n}$
- v. Given that $u_1=1,u_2=2$ and $u_{n+1}=u_n+u_{n-1}$, find u_3 and u_4 .
- vi. A sequence is recursively defined by $u_{n+1}=3(u_n)-2$. The 5^{th} term of the sequence is 49. Find u_4 and u_3 .