Integration

i. Compute the following integrals:

$$\bullet \int x^2 dx$$

$$\bullet \int x^5 dx$$

$$\bullet \int 4x^3 dx$$

$$\bullet \int 5x^{-2} dx$$

$$\bullet \int 7x^2 + 3 \ dx$$

•
$$\int \sqrt{x} \ dx$$

•
$$\int 6\sqrt[3]{x} \ dx$$

$$\bullet \int x^5 - 6x^2 dx$$

$$\bullet \int \frac{8}{x^2} dx$$

•
$$\int -x \ dx$$

- ii. The curve C has an equation such that $\frac{dy}{dx}=\frac{6}{x^2}+3x-2$. Find a general equation for the curve C in terms of y.
- iii. The curve C has equation y=f(x), $x\neq 0$, and the point P(3,2) lies on C. Given that:

$$f'(x) = 3x^2 - 6 + \frac{9}{x^3}$$

Find f(x).

iv. Calculate the following integrals:

$$\bullet \int \frac{x^2 + 5x - 3x^4}{x} dx$$

$$\bullet \int (x+4)^2 dx$$

v. The curve C has equation y=g(x), x>0, and $g'(x)=4x-6\sqrt{x}+\frac{4}{x^2}$. Given that the point P(4,1) lies on C, find f(x) and simplify.