Further Coordinate Geometry

i. Find the equations of the straight lines with the following properties:

- Gradient $=2$, Point $=(5,6)$
- Gradient $=-1$, Point $=(3,0)$
- Gradient $=-5$, Point $=(4,-2)$
- Gradient $=1$, Point $=(0,0)$
- Gradient $=5$, Point $=(2,3)$
- Gradient $=1 / 2$, Point $=(1,2)$
- Gradient $=10$, Point $=(-1,-1)$
- Gradient $=-1 / 5$, Point $=(5,15)$
ii. Find the equations of the straight lines which passes through the points:
- $(-1,0)$ and $(-2,1)$
- $(2,3)$ and $(4,6)$
- $(10,5)$ and $(6,8)$
- $(2,8)$ and $(-5,-4)$
- $(4,3)$ and $(16,12)$
- $(5,6)$ and $(-2,9)$
iii. The line l has equation $5 y+6 x+9=0$.
- Verify that the point $A=(6,-9)$ lies on the line l.
- Find the gradient of the line l.
- Find the equation of the normal to the line l at the point A.
iv. The curve C is given by the equation $y=x^{2}(x-3)+4$.
- The points $A=(2, a)$ and $B=(1, b)$ lie on the curve C. Find the values of a and b.
- Hence, find the distance $A B$.

