Functions

i. For each of the given functions, calculate the following values:

- f(2) if f(x) = x + 5
- f(5) if f(x) = 3 x
- g(9) if $g(x) = \frac{1}{x} + 3$
- f(2) if $f(x) = 2\sqrt{x}$
- f(-4) if $f(x) = x^2 x + 4$

- f(-10) if $\overline{f}(x) = 2x^2 5x 6$
- h(-7) if $h(x) = \frac{8}{x^2}$
- g(0) if g(x) = 1
- f(90) if $f(x) = \sin x$
- $f(\sqrt{2})$ if $f(x) = 3x^2 + 5x 9$
- ii. Express the following quadratic functions in the form $(x+p)^2 q$ and then find the minimum point on the curve.
 - $f(x) = x^2 + 20x$
 - $g(x) = x^2 + 2x 3$
 - $f(x) = x^2 16x + 2$
 - $f(x) = x^2 + 2x 11$
 - $h(x) = x^2 8x + 1$
 - $a(x) = 2x^2 + 12x 3$

iii. Find the coordinates of the maximum point on the curve $y = 4 - 6x - x^2$.

iv. A curve C has equation $y = x^3 + 4x^2 + 3x$

- The equation of the curve C can be given in the form $y = x(ax^2+bx+c)$, where a, b, c are constants. State the values of a, b, c
- Hence, or otherwise, factorise the equation of C completely.
- **v**. The curve C has equation $y = (x 1)(x + 2)^2$
 - State the co-ordinates of points where the curve meets the x-axis.
 - Show that the point (2, 16) lies on the curve C.
 - The equation of the curve C can be given in the form $y = ax^3 + bx^2 + cx + d$. Find the values of the coefficients a, b, c, d