Functions

i. For each of the given functions, calculate the following values:

- $f(2)$ if $f(x)=x+5$
- $f(-10)$ if $f(x)=2 x^{2}-5 x-6$
- $f(5)$ if $f(x)=3-x$
- $h(-7)$ if $h(x)=\frac{8}{x^{2}}$
- $g(9)$ if $g(x)=\frac{1}{x}+3$
- $g(0)$ if $g(x)=1$
- $f(2)$ if $f(x)=2 \sqrt{x}$
- $f(90)$ if $f(x)=\sin x$
- $f(-4)$ if $f(x)=x^{2}-x+4$
- $f(\sqrt{2})$ if $f(x)=3 x^{2}+5 x-9$
ii. Express the following quadratic functions in the form $(x+p)^{2}-q$ and then find the minimum point on the curve.
- $f(x)=x^{2}+20 x$
- $g(x)=x^{2}+2 x-3$
- $f(x)=x^{2}-16 x+2$
- $f(x)=x^{2}+2 x-11$
- $h(x)=x^{2}-8 x+1$
- $a(x)=2 x^{2}+12 x-3$
iii. Find the coordinates of the maximum point on the curve $y=4-6 x-x^{2}$.
iv. A curve C has equation $y=x^{3}+4 x^{2}+3 x$
- The equation of the curve C can be given in the form $y=x\left(a x^{2}+b x+c\right)$, where a, b, c are constants. State the values of a, b, c
- Hence, or otherwise, factorise the equation of C completely.
v. The curve C has equation $y=(x-1)(x+2)^{2}$
- State the co-ordinates of points where the curve meets the x-axis.
- Show that the point $(2,16)$ lies on the curve C.
- The equation of the curve C can be given in the form $y=a x^{3}+b x^{2}+c x+d$. Find the values of the coefficients a, b, c, d

