Basic Algebra

Basic Algebraic Identities

$$
\begin{aligned}
& x+x=2 x \\
& x \times x=x^{2}
\end{aligned}
$$

$$
\begin{aligned}
x^{p} \times x^{q} & =x^{p+q} \\
\left(x^{p}\right)^{q} & =x^{p q}
\end{aligned}
$$

i. Solve the equation:

$$
\frac{5}{r}+3=2
$$

Solution: We want to unwrap the r term so we reach an answer in the form $r=$?, so:

$$
\begin{aligned}
\frac{5}{r}+3 & =2 & & \text { (Original equation) } \\
5+3 r & =2 r & & \text { (Multiply each term by } r \text {) } \\
5 & =-r & & \text { (Subtract } 3 r \text { from both sides) } \\
r & =-5 & & \text { (Divide both sides by } 4 \text {) }
\end{aligned}
$$

We can substitute our value back into the original equation to check our answer:

$$
\begin{array}{r}
\frac{5}{-5}+3=2 \\
-1+3=2 \\
2=2
\end{array}
$$

ii. Solve the equation:

$$
9 y+3=5 y+13
$$

Solution: We wish to have terms with y 's only on one side of the equation, so:

$$
\begin{aligned}
9 y+3 & =5 y+13 & & \text { (Original equation) } \\
4 y+3 & =13 & & \text { (Subtract } 5 y \text { from both sides) } \\
4 y & =10 & & \text { (Subtract } 3 \text { from both sides) } \\
y & =10 / 4 & & \text { (Divide both sides by } 4 \text {) } \\
& =2.5 & &
\end{aligned}
$$

iii. Solve the equation:

$$
\frac{6}{f+2}=\frac{2}{f-1}
$$

Solution: We want to get rid of the two fractions and have terms with f 's only on one side of the equation, so:

$$
\begin{aligned}
\frac{6}{f+2} & =\frac{2}{f-1} & & \text { (Original equation) } \\
6 & =\frac{2}{f-1} \cdot(f+2) & & \text { (Multiply both sides by }(f+2)) \\
6 \cdot(f-1) & =2 \cdot(f+2) & & \text { (Multiply both sides by }(f-1)) \\
6 f-6 & =2 f+4 & & \text { (Multiply out the brackets) } \\
4 f-6 & =4 & & \text { (Subtract } 2 f \text { from both sides) } \\
4 f & =10 & & \text { (Add } 6 \text { to both sides) } \\
f & =10 / 4=2.5 & & \text { (Divide both sides by 4) }
\end{aligned}
$$

We can substitute our value back into the original equation to check our answer:

$$
\begin{aligned}
\frac{6}{2.5+2} & =\frac{2}{2.5-1} \\
\frac{6}{4.5} & =\frac{2}{1.5} \\
\frac{12}{9} & =\frac{4}{3} \\
\frac{4}{3} & =\frac{4}{3}
\end{aligned}
$$

iv. Factorise:

$$
5 x^{2}+15 x
$$

Solution: We want to simplify the equation by finding any common factors of each of the terms. We note that both terms of the equation have a common factor of 5 and x. We take those factors outside the bracket and divide each term by the factor as follows:

$$
\begin{aligned}
5 x^{2}+15 x & =5 x\left(\frac{5 x^{2}+15 x}{5 x}\right) \\
& =5 x\left(\frac{5 x^{2}}{5 x}+\frac{15 x}{5 x}\right) \\
& =5 x(x+3)
\end{aligned}
$$

(Take $5 x$ out of the bracket and divide by the factor)
(Split the division into two divisions)
(Compute the division)

v. Expand the equation:

$$
10 y\left(y+4+y^{2}\right)
$$

Solution: We want to multiply each of the terms in the bracket by the factor outside the bracket:

$$
\begin{aligned}
10 y\left(y+4+y^{2}\right) & =(10 y) y+(10 y) 4+(10 y) y^{2} \\
& =10 y^{2}+40 y+10 y^{3}
\end{aligned}
$$

(Multiply each term inside the bracket by $10 y$)
(Compute the multiplication)
vi. Rearrange the equation to make d the subject:

$$
r=\frac{1}{2}(c-d)
$$

Solution: We wish to have d on the left-hand side so we must 'unwrap' the right-hand side as follows:

$$
\begin{aligned}
r & =\frac{1}{2}(c-d) & & \text { (Original equation) } \\
2 r & =c-d & & \text { (Multiply both sides by 2) } \\
2 r-c & =-d & & \text { (Subtract } c \text { from both sides) } \\
c-2 r & =d & & \text { (Multiply both sides by }-1 \text {) } \\
d & =c-2 r & & \text { (Swap the two sides) }
\end{aligned}
$$

vii. Rearrange the equation below to make e the subject

$$
f=10-\frac{\sqrt{e}}{5}
$$

Solution: We wish to have e on the left-hand side so we must 'unwrap' the right-hand side as follows:

$$
\begin{aligned}
f & =10-\frac{\sqrt{e}}{5} \\
f-10 & =-\frac{\sqrt{e}}{5} \\
10-f & =\frac{\sqrt{e}}{5} \\
5(10-f) & =\sqrt{e} \\
(5(10-f))^{2} & =e \\
e & =25(10-f)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Original equation) } \\
& \text { (Subtract } 10 \text { from both sides) } \\
& \text { (Multiply both sides by }-1 \text {) } \\
& \text { (Multiply both sides by } 5 \text {) } \\
& \text { (Square both sides) } \\
& \text { (Swap the sides and simplify) }
\end{aligned}
$$

