Basic Slope Problems

i. A weight of 4kg is at rest on a smooth slope of 28°. The weight is held in place by a light string which is attached to a wall at the top of the slope. Find the tension in the string.

Solution: Firstly, we should add the forces we are told in the question to complete our diagram. Remember a mass of 4kg will have a gravitational force (weight) of $(4 \times 9.8)N = 39.2N$

Now we need to resolve the forces into their components acting parallel and perpendicular to the slope. From SOHCAHTOA, we can break the weight into the components $W \sin 28$ and $W \cos 28$.

Hence, we obtain the simplified diagram:

Since our mass is at rest (in equalibrium), the forces acting parallel to the slope must be equal i.e. $T = W \cos 28$. Since W = 39.2, we have,

 $T = 39.2 \times \sin 28 = 18.4N$

ii. A parcel of mass 5kg lies on a smooth plane inclined at an angle α to the horizontal. The parcel is held in equilibrium by a force of magnitude 20N acting at 48° to the plane, as shown. Find the value of α .

Solution: Firstly, we need to add the forces we are told in the question to complete our diagram. Remember a mass of 5kg will have a gravitational force (weight) of $(5 \times 9.8)N = 49N$

Now we need to resolve the forces into their components acting parallel and perpendicular to the slope. From SOHCAHTOA, we can break the weight into the components $W \sin \alpha$ and $W \cos \alpha$.

Similarly, we can break the horizontal force into:

Hence, we obtain the simplified diagram:

Since our mass is at rest (in equalibrium), the forces acting parallel to the slope must be equal i.e. $W \sin \alpha = 20 \cos 48$. Since W = 49, we have,

$$\sin \alpha = \frac{20\cos 48}{49} \approx 0.273 \implies \alpha = 15.85^{\circ}$$