## Volume of a Sphere

Below we prove that the volume of Sphere $S$ with radius $r$ is given by the equation: $V_{S}=\frac{4}{3} \pi r^{3}$.

## Proof using Multi-Variate Integration

A Sphere $S$ with radius $r$ and centre the origin, has the Cartesian equation:

$$
x^{2}+y^{2}+z^{2}=r^{2}
$$

Hence, $S$ can be described as the set of points:

$$
S=\left\{(x, y, z):-r \leq x \leq r,-\sqrt{r^{2}-x^{2}} \leq y \leq \sqrt{r^{2}-x^{2}},-\sqrt{r^{2}-x^{2}-y^{2}} \leq z \leq \sqrt{r^{2}-x^{2}-y^{2}}\right\}
$$

Then the Volume of $S$ can be found:

$$
V_{S}=\int_{S} d V \quad \text { where } d V=d x d y d z
$$

To simplify the integral, we convert to spherical polar co-ordinates, where $S$ can be defined as the set of points:

$$
S=\{(\rho, \phi, \theta): 0 \leq \rho \leq r, 0 \leq \phi \leq 2 \pi, 0 \leq \theta \leq \pi\} .
$$

Since $d V=\rho^{2} \sin \theta d \rho d \phi d \theta$ for a sphere, the volume of $S$ can be found:

$$
\begin{aligned}
V_{S} & =\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{r} \rho^{2} \sin \theta d \rho d \phi d \theta \\
& =\int_{0}^{\pi} \sin \theta d \theta \cdot \int_{0}^{2 \pi} d \phi \cdot \int_{0}^{r} \rho^{2} d \rho \\
& =[-\cos \theta]_{0}^{\pi} \cdot[\phi]_{0}^{2 \pi} \cdot\left[\frac{\rho^{3}}{3}\right]_{0}^{r} \\
& =-[\cos \pi-\cos 0] \cdot 2 \pi \cdot \frac{r^{3}}{3} \\
& =2 \cdot 2 \pi \cdot \frac{r^{3}}{3} \\
& =\frac{4}{3} \pi r^{3}
\end{aligned}
$$

