Volume of a Cylinder

Below we prove that the volume of Cylinder C with radius r and height H is given by the equation:

$$
V_{C}=\pi r^{2} H
$$

Proof using Multi-Variate Integration

A Cylinder C with radius r and height H can be described in cylindrical polar co-ordinates as the set of points:

$$
C=\{(\rho, \phi, z): 0 \leq \rho \leq r, 0 \leq \phi \leq 2 \pi, 0 \leq z \leq H\}
$$

Since $d V=\rho d \rho d \phi d z$ for a cylinder, the volume of C can be found:

$$
\begin{aligned}
V_{C} & =\int_{0}^{H} \int_{0}^{2 \pi} \int_{0}^{r} \rho d \rho d \phi d z \\
& =\int_{0}^{H} d z \cdot \int_{0}^{2 \pi} d \phi \cdot \int_{0}^{r} \rho d \rho \\
& =[z]_{0}^{H} \cdot[\phi]_{0}^{2 \pi} \cdot\left[\frac{\rho^{2}}{2}\right]_{0}^{r} \\
& =H \cdot 2 \pi \cdot \frac{r^{2}}{2} \\
& =\pi r^{2} H
\end{aligned}
$$

