$\sqrt{2}$ is irrational

Below we prove that the $\sqrt{2}$ is irrational, that is, it can't be expressed in the form of a fraction.

Proof By Contradiction

Suppose that $\sqrt{2}$ was rational. That is, there exists two whole numbers $m, n \in \mathbb{N}$ such that:

$$
\sqrt{2}=\frac{m}{n} .
$$

We can assume that m and n are the smallest such numbers (i.e. the fraction is in it's simpliest form). We note that this means that not both m and n can be even (otherwise the fraction could be simplified).

Then it could be said that:

$$
2=\frac{m^{2}}{n^{2}} \Longrightarrow m^{2}=2 n^{2}
$$

This implies that 2 divides m^{2}, in other words, m^{2} is even. If m^{2} is even, then so must m. So there must exist a whole number k such that $2 k=m$. Substituting into our equation, we have:

$$
\begin{aligned}
m^{2}=2 n^{2} & \Longrightarrow(2 k)^{2}=2 n^{2} \\
& \Longrightarrow 4 k^{2}=2 n^{2} \\
& \Longrightarrow 2 k^{2}=n^{2}
\end{aligned}
$$

Now we can see that 2 divides n^{2} and so by the same argument, n must also even. However, we started with the assumption that not both m and n are even. Hence we have a contraction and it follows that

$$
\sqrt{2} \neq \frac{m}{n}, \quad \forall m, n \in \mathbb{N}
$$

