Derivative of a quadratic polynomial (from first principles)

Below we show from first principles that the derivative of a quadratic polynomial $f(x)=a x^{2}+b x+c$ is given

$$
f^{\prime}(x)=2 a x+b .
$$

Proof

From the first principle definition of a derivative, we have that for a continuous function $f(x)$, it's derivative $f^{\prime}(x)$ is given by:

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\triangle x)-f(x)}{\triangle x}
$$

So, for the quadratic polynomial $f(x)=a x^{2}+b x+c$, we have:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{\triangle x \rightarrow 0} \frac{a(x+\triangle x)^{2}+b(x+\triangle x)+c-\left(a x^{2}+b x+c\right)}{\triangle x} \\
& =\lim _{\triangle x \rightarrow 0} \frac{a x^{2}+2 a x \triangle x+a(\triangle x)^{2}+b x+b \triangle x+c-a x^{2}-b x-c}{\triangle x} \\
& =\lim _{\triangle x \rightarrow 0} \frac{2 a x \triangle x+a(\triangle x)^{2}+b \triangle x}{\triangle x} \\
& =\lim _{\triangle x \rightarrow 0} 2 a x+a \triangle x+b \\
& =2 a x+b
\end{aligned}
$$

