C1 Sample Exam Paper

Time Allowed: 1 hour 30 minutes

1. Differentiate, with respect to *x*:

(a)
$$y = x^4 + \frac{3}{x} + 1$$
 [3]
(b) $y = (2 + \sqrt{x})^2$ [3]

2. (a) Rationalise the denominator of the fraction $\frac{5}{\sqrt{3}}$.

(b) Show that the expression:

$$\frac{5-\sqrt{3}}{6+\sqrt{3}}$$
[4]

can be written in the form: $\frac{a+b\sqrt{3}}{3}$, where a and b are integers to be found.

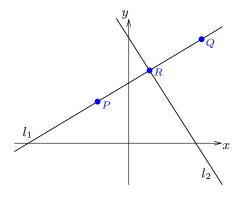
3. (a) Show that the function:

$$f(x) = \frac{(x+2)^2(x-1)}{x}, \ x \neq 0$$
[3]

can be written as

$$f(x) = x^2 + 3x - 4x^{-1}.$$

- (b) Find f'(x).
- (c) Hence, find the equation of the tangent to curve y = f(x) at x = 1.
- **4.** The diagram below shows the lines l_1 and l_2 in the (x, y) plane. The line l_1 passes through the points P, Q, R and is perpendicular to l_2 .



- (a) Given that P = (-1, 4) and Q = (7, 5), find an equation for l_1 , giving your answer in the [4] form ay + bx + c = 0, where a, b, c are integers.
- (b) Verify that the point R = (3, 9/2) is the mid-point of PQ. [2]
- (c) Given that l_2 passes through R, find an equation for l_2 .

[5]

	BERRY			
1				
4			X	
1		7	$\overline{}$	
0			Č∢	
$ \subseteq $			<u> </u>	

[1]

[3]

[5]

GCE Mathematics - Core 1

6. An arithmetic sequence a_n has first term $a_1 = 87$ and subsequent terms have a common difference of -4.

 $x^2 + 2x - 10 < 3x + 10$

- (a) What is the 7^{th} term in the sequence?
- (b) What is the highest value of n for which a_n is positive?

5. List all the possible integer values of x for which the following inequality holds:

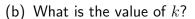
- (c) Hence, find the maximum value of S_n , the sum of the first n terms of the sequence. [4]
- 7. Solve the simultaneous equations, leaving your answers in surd form: [12]

$$y = 2x^2 - 3x + 5$$
$$y + 2x - 7 = 0$$

- 8. The curve C has equation y = f(x), x > 0, with $f'(x) = 3x^2 + \frac{8}{x^3} 10\sqrt{x}$.
 - (a) Given that the curve C passes through the point P(1,1), find f(x).

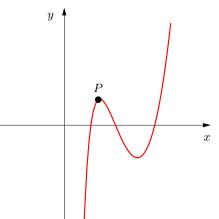
The graph below shows a plot of the curve C.

The curve C is transformed by y = f(x) + k, with k a positive integer. The co-ordinates of P is now (0, 1).



Without specific calculation, sketch the following curves and give the co-ordinates of P in each case.

i.
$$y = f(x+3)$$
 [3]
ii. $y = 2f(x)$ [3]



[2]

[4]

[6]

[1]

[5]

[3]

[1]

[2]

- 9. The equation $(\frac{1}{4}k)x^2 10x + 4k = x 2k$ has two real solutions for x.
 - (a) Show that k satisfies $k^2 < 22$.
 - (b) Hence, find all the possible values of k, such that the condition holds.
- 10. A sequence is defined recursively by:

$$\begin{cases} x_3 = 5\\ x_{n+1} = \frac{x_n + p}{2} \end{cases}$$

with p a non-zero constant.

(a) Write down an expression in p for x_4 .

(b) Show that $x_1 = 20 - 3p$. [4]

Given that $x_4 = 4$,

- (c) Find the value of x_1 .
- **11.** Given that $f(x) = x^2 8x + 14$, $x \ge 0$,
 - (a) Express f(x) in the form $(x+a)^2 + b$, where a, b are intergers. [3]

The curve C with equation y = f(x), $x \ge 0$, meets the y-axis at P and has a minimum point at Q.

(b) Sketch the graph of C, showing the coordinates of P and Q. [5]

The line y = 21 meets C at the point R.

(c) Find the x-coordinate of R, giving your answer in the form $p + \sqrt{q}$, where p and q are [4] integers.