C1 Sample Exam Paper

Time Allowed: 1 hour 30 minutes

1. Differentiate, with respect to x :
(a) $y=x^{4}+\frac{3}{x}+1$
(b) $y=(2+\sqrt{x})^{2}$
2. (a) Rationalise the denominator of the fraction $\frac{5}{\sqrt{3}}$.
(b) Show that the expression:

$$
\frac{5-\sqrt{3}}{6+\sqrt{3}}
$$

can be written in the form: $\frac{a+b \sqrt{3}}{3}$, where a and b are integers to be found.
3. (a) Show that the function:

$$
f(x)=\frac{(x+2)^{2}(x-1)}{x}, x \neq 0
$$

can be written as

$$
f(x)=x^{2}+3 x-4 x^{-1} .
$$

(b) Find $f^{\prime}(x)$.
(c) Hence, find the equation of the tangent to curve $y=f(x)$ at $x=1$.
4. The diagram below shows the lines l_{1} and l_{2} in the (x, y) plane. The line l_{1} passes through the points P, Q, R and is perpendicular to l_{2}.

(a) Given that $P=(-1,4)$ and $Q=(7,5)$, find an equation for l_{1}, giving your answer in the form $a y+b x+c=0$, where a, b, c are integers.
(b) Verify that the point $R=(3,9 / 2)$ is the mid-point of $P Q$.
(c) Given that l_{2} passes through R, find an equation for l_{2}.
5. List all the possible integer values of x for which the following inequality holds:

$$
x^{2}+2 x-10 \leq 3 x+10
$$

6. An arithmetic sequence a_{n} has first term $a_{1}=87$ and subsequent terms have a common difference of -4 .
(a) What is the $7^{\text {th }}$ term in the sequence?
(b) What is the highest value of n for which a_{n} is positive?
(c) Hence, find the maximum value of S_{n}, the sum of the first n terms of the sequence.
7. Solve the simultaneous equations, leaving your answers in surd form:

$$
\begin{array}{r}
y=2 x^{2}-3 x+5 \\
y+2 x-7=0
\end{array}
$$

8. The curve C has equation $y=f(x), x>0$, with $f^{\prime}(x)=3 x^{2}+\frac{8}{x^{3}}-10 \sqrt{x}$.
(a) Given that the curve C passes through the point $P(1,1)$, find $f(x)$.

The graph below shows a plot of the curve C.

The curve C is transformed by $y=f(x)+k$, with k a positive integer. The co-ordinates of P is now $(0,1)$.
(b) What is the value of k ?

Without specific calculation, sketch the following curves and give the co-ordinates of P in each case.
i. $y=f(x+3)$
ii. $y=2 f(x)$
9. The equation $\left(\frac{1}{4} k\right) x^{2}-10 x+4 k=x-2 k$ has two real solutions for x.
(a) Show that k satisfies $k^{2}<22$.
(b) Hence, find all the possible values of k, such that the condition holds.
10. A sequence is defined recursively by:

$$
\left\{\begin{array}{l}
x_{3}=5 \\
x_{n+1}=\frac{x_{n}+p}{2}
\end{array}\right.
$$

with p a non-zero constant.
(a) Write down an expression in p for x_{4}.
(b) Show that $x_{1}=20-3 p$.

Given that $x_{4}=4$,
(c) Find the value of x_{1}.
11. Given that $f(x)=x^{2}-8 x+14, x \geq 0$,
(a) Express $f(x)$ in the form $(x+a)^{2}+b$, where a, b are intergers.

The curve C with equation $y=f(x), x \geq 0$, meets the y -axis at P and has a minimum point at Q.
(b) Sketch the graph of C, showing the coordinates of P and Q.

The line $\mathrm{y}=21$ meets C at the point R.
(c) Find the x-coordinate of R, giving your answer in the form $p+\sqrt{q}$, where p and q are integers.

