Page 70 - Slide_01.png

Data and Information INFO 2

Oliver Boorman-Humphrey

www.oliverboorman.biz

14 April 2013

Oliver Boorman-Humphrey

Page 71 - Slide_02.png

What is Data?

What is data?

Oliver Boorman-Humphrey

Page 72 - Slide_03.png

What is Data?

What is data?

Data

Raw facts and figures collected together, before they have been processed.

Oliver Boorman-Humphrey

Page 73 - Slide_04.png

What is Data?

What is data?

Data

Raw facts and figures collected together, before they have been processed.

Data can come in a number of forms:

Oliver Boorman-Humphrey

Page 74 - Slide_05.png

What is Data?

What is data?

Data

Raw facts and figures collected together, before they have been processed.

Data can come in a number of forms:

→ Text

Oliver Boorman-Humphrey

Page 75 - Slide_06.png

What is Data?

What is data?

Data

Raw facts and figures collected together, before they have been processed.

Data can come in a number of forms:

- → Text
- → Numbers or Statistics

Oliver Boorman-Humphrey

Page 76 - Slide_07.png

What is Data?

What is data?

Data

Raw facts and figures collected together, before they have been processed.

Data can come in a number of forms:

- → Text
- → Numbers or Statistics
- → Images

Oliver Boorman-Humphrey

Page 77 - Slide_08.png

What is Data?

What is data?

Data

Raw facts and figures collected together, before they have been processed.

Data can come in a number of forms:

- → Text
- → Numbers or Statistics
- → Images
- → Moving images

Oliver Boorman-Humphrey

Page 78 - Slide_09.png

What is Data?

What is data?

Data

Raw facts and figures collected together, before they have been processed.

Data can come in a number of forms:

- → Text
- → Numbers or Statistics
- → Images
- → Moving images
- → Sound

Oliver Boorman-Humphrey

Page 79 - Slide_10.png

Data Sources

Oliver Boorman-Humphrey

Page 80 - Slide_11.png

Data Sources

Data Source

A location from which data can be found.

Oliver Boorman-Humphrey

Page 81 - Slide_12.png

Data Sources

Data Source

A location from which data can be found.

They come in different forms:

Oliver Boorman-Humphrey

Page 82 - Slide_13.png

Data Sources

Data Source

A location from which data can be found.

They come in different forms:

→ Direct (or Primary)

Oliver Boorman-Humphrey

Page 83 - Slide_14.png

Data Sources

Data Source

A location from which data can be found.

They come in different forms:

- → Direct (or Primary)
- → Indirect (or Secondary)

Oliver Boorman-Humphrey

Page 84 - Slide_15.png

Data Sources

Data Source

A location from which data can be found.

They come in different forms:

- → Direct (or Primary)
- → Indirect (or Secondary)
- → Static

Oliver Boorman-Humphrey

Page 85 - Slide_16.png

Data Sources

Data Source

A location from which data can be found.

They come in different forms:

- → Direct (or Primary)
- → Indirect (or Secondary)
- → Static
- → Dynamic

Oliver Boorman-Humphrey

Page 86 - Slide_17.png

Data Sources

Oliver Boorman-Humphrey

Page 87 - Slide_18.png

Data Sources

Direct Data

This is data is collected from its original source

Oliver Boorman-Humphrey

Page 88 - Slide_19.png

Data Sources

Direct Data

This is data is collected from its original source

Indirect Data

Data that is used for a different purpose to that that it was meant for. The people involved in collecting the data are different to those who use it.

Page 89 - Slide_20.png

Data Sources

Direct Data

This is data is collected from its original source

Indirect Data

Data that is used for a different purpose to that that it was meant for. The people involved in collecting the data are different to those who use it.

Static Data Source

A source of data that's data remains the same over time.

Oliver Boorman-Humphrey

Page 90 - Slide_21.png

Data Sources

Direct Data

This is data is collected from its original source

Indirect Data

Data that is used for a different purpose to that that it was meant for. The people involved in collecting the data are different to those who use it.

Static Data Source

A source of data that's data remains the same over time.

Dynamic Data Source

A source of data that's data changes or is updated over time.

Oliver Boorman-Humphrey

Page 91 - Slide_22.png

Data Sources

Match the data source to it's type.

4 m > 4 m >

Oliver Boorman-Humphrey

Page 92 - Slide_23.png

Data Sources

Advantages of direct data:

· total control over quality

Disadvantages of direct data:

· Cosk

Oliver Boorman-Humphrey

Page 93 - Slide_24.png

Data encoding

Sometimes we use data encoding to represent data in an information system.

Oliver Boorman-Humphrey

Page 94 - Slide_25.png

Data encoding

Sometimes we use data encoding to represent data in an information system.

Encoding

Putting data into a code or shorthand notation - by taking the original data and converting it in a different representation.

Oliver Boorman-Humphrey

Page 95 - Slide_26.png

Data encoding

Sometimes we use data encoding to represent data in an information system.

Encoding

Putting data into a code or shorthand notation - by taking the original data and converting it in a different representation.

Examples of Encoding include:

Oliver Boorman-Humphrey

Page 96 - Slide_27.png

Data encoding

Sometimes we use data encoding to represent data in an information system.

Encoding

Putting data into a code or shorthand notation - by taking the original data and converting it in a different representation.

Examples of Encoding include:

→ Jan, Feb. Mar ... for months of the year

Oliver Boorman-Humphrey

Page 97 - Slide_28.png

Data encoding

Sometimes we use data encoding to represent data in an information system.

Encoding

Putting data into a code or shorthand notation - by taking the original data and converting it in a different representation.

Examples of Encoding include:

- → Jan, Feb. Mar ... for months of the year
- → M or F ... for male or female

Oliver Boorman-Humphrey

Page 98 - Slide_29.png

Data encoding

Sometimes we use data encoding to represent data in an information system.

Encoding

Putting data into a code or shorthand notation - by taking the original data and converting it in a different representation.

Examples of Encoding include:

- → Jan, Feb. Mar ... for months of the year
- → M or F ... for male or female
- → Y or N ... for yes or no

Oliver Boorman-Humphrey

Page 99 - Slide_30.png

We need more than just data

Oliver Boorman-Humphrey

Page 100 - Slide_31.png

We need more than just data

Example

What does 190813 mean?

Oliver Boorman-Humphrey

Page 101 - Slide_32.png

We need more than just data

Example

What does 190813 mean?

We can not tell what data is supposed to mean with some prior knowledge or context.

Oliver Boorman-Humphrey

Page 102 - Slide_33.png

We need more than just data

Example

What does 190813 mean?

We can not tell what data is supposed to mean with some prior knowledge or context.

Knowledge

Application of Information in a Situation

Oliver Boorman-Humphrey

Page 103 - Slide_34.png

We need more than just data

Example

What does 190813 mean?

We can not tell what data is supposed to mean with some prior knowledge or context.

Knowledge

Application of Information in a Situation

If we know that our example is a date in the form ddmmyy, then the meaning is obvious. Our data represents 19th August 2013.

Oliver Boorman-Humphrey

Page 104 - Slide_35.png

Information

Information

The result of taking data and processing it. This involves giving the data meaning.

Oliver Boorman-Humphrey

Page 105 - Slide_36.png

Information

Information

The result of taking data and processing it. This involves giving the data meaning.

Information = Data + [Context] + [Structure] + Meaning

Oliver Boorman-Humphrey

Page 106 - Slide_37.png

Information

Information

The result of taking data and processing it. This involves giving the data meaning.

Information = Data + [Context] + [Structure] + Meaning

Example:

Oliver Boorman-Humphrey

Page 107 - Slide_38.png

Information

Information

The result of taking data and processing it. This involves giving the data meaning.

Information = Data + [Context] + [Structure] + Meaning

Example:

→ Data: 67

Page 108 - Slide_39.png

Information

Information

The result of taking data and processing it. This involves giving the data meaning.

 $Information = \mathsf{Data} + [\mathsf{Context}] + [\mathsf{Structure}] + \mathsf{Meaning}$

Example:

→ Data: 67

→ Context: ICT Exams

Page 109 - Slide_40.png

Information

Information

The result of taking data and processing it. This involves giving the data meaning.

Information = Data + [Context] + [Structure] + Meaning

Example:

→ Data: 67

→ Context: ICT Exams

→ Structure: Percentage

Page 110 - Slide_41.png

Information

Information

The result of taking data and processing it. This involves giving the data meaning.

Information = Data + [Context] + [Structure] + Meaning

Example:

→ Data: 67

→ Context: ICT Exams

→ Structure: Percentage

→ Meaning: Average

Page 111 - Slide_42.png

Information

Information

The result of taking data and processing it. This involves giving the data meaning.

Information = Data + [Context] + [Structure] + Meaning

Example:

→ Data : 67

→ Context: ICT Exams

→ Structure: Percentage

→ Meaning: Average

The information we get from this is that the average score in the ICT exam was 67%.

Page 112 - Slide_43.png

Quality of Information

Computers are not intelligent, they are dumb! They only respond to commands and instructions.

Oliver Boorman-Humphrey

Page 113 - Slide_44.png

Quality of Information

Computers are not intelligent, they are dumb! They only respond to commands and instructions.

They don't have any way of knowing whether data you enter is correct or accurate.

Oliver Boorman-Humphrey

Page 114 - Slide_45.png

Quality of Information

Computers are not intelligent, they are dumb! They only respond to commands and instructions.

They don't have any way of knowing whether data you enter is correct or accurate.

GIGO

Garbage In, Garbage Out

Oliver Boorman-Humphrey

Page 115 - Slide_46.png

Quality of Information

Computers are not intelligent, they are dumb! They only respond to commands and instructions.

They don't have any way of knowing whether data you enter is correct or accurate.

GIGO

Garbage In, Garbage Out

GIGO means that if the user inputs the wrong or inaccurate data, the computer will output the wrong data.

Oliver Boorman-Humphrey

Page 116 - Slide_47.png

Quality of Information

The Quality of Information is affected by six factors:

Oliver Boorman-Humphrey

Page 117 - Slide_48.png

Quality of Information

The Quality of Information is affected by six factors:

→ Accuracy

Oliver Boorman-Humphrey

Page 118 - Slide_49.png

Quality of Information

The Quality of Information is affected by six factors:

- → Accuracy
- → Relevance

Page 119 - Slide_50.png

Quality of Information

The Quality of Information is affected by six factors:

- → Accuracy
- → Relevance
- → Age

Page 120 - Slide_51.png

Quality of Information

The Quality of Information is affected by six factors:

- → Accuracy
- → Relevance
- → Age
- → Completeness

Oliver Boorman-Humphrey

Page 121 - Slide_52.png

Quality of Information

The Quality of Information is affected by six factors:

- → Accuracy
- → Relevance
- → Age
- → Completeness
- → Presentation

Oliver Boorman-Humphrey

Page 122 - Slide_53.png

Quality of Information

The Quality of Information is affected by six factors:

- → Accuracy
- → Relevance
- → Age
- → Completeness
- → Presentation
- → Level of Detail

Oliver Boorman-Humphrey

Page 123 - Slide_54.png

Quality of Information

Accuracy:

If data is not accurate, it cannot be trusted.

Oliver Boorman-Humphrey

Page 124 - Slide_55.png

Quality of Information

Accuracy:

If data is not accurate, it cannot be trusted.

If you have a database which stores people's birthdays and you have one birthday entered wrongly, that data is useless!

Oliver Boorman-Humphrey

Page 125 - Slide_56.png

Quality of Information

Accuracy:

If data is not accurate, it cannot be trusted.

If you have a database which stores people's birthdays and you have one birthday entered wrongly, that data is useless!

Relevance:

If you have some information but it does not relate to the topic, it is worthless!

Oliver Boorman-Humphrey

Page 126 - Slide_57.png

Quality of Information

Accuracy:

If data is not accurate, it cannot be trusted.

If you have a database which stores people's birthdays and you have one birthday entered wrongly, that data is useless!

Relevance:

If you have some information but it does not relate to the topic, it is worthless!

If you have a list of telephone numbers but you want a list of fax numbers, you have no information.

Oliver Boorman-Humphrey

Page 127 - Slide_58.png

Quality of Information

Age:

Information can change over time. If you know information is from the past, it may not be relevant now.

Oliver Boorman-Humphrey

Page 128 - Slide_59.png

Quality of Information

Age:

Information can change over time. If you know information is from the past, it may not be relevant now.

If you have some statistics about the number of accounts in a bank, but it was collected 3 years ago, it's almost certainly incorrect now!

Oliver Boorman-Humphrey

Page 129 - Slide_60.png

Quality of Information

Age:

Information can change over time. If you know information is from the past, it may not be relevant now.

If you have some statistics about the number of accounts in a bank, but it was collected 3 years ago, it's almost certainly incorrect now!

Completeness:

If you only have part of the information then it is worthless!

Oliver Boorman-Humphrey

Page 130 - Slide_61.png

Quality of Information

Age:

Information can change over time. If you know information is from the past, it may not be relevant now.

If you have some statistics about the number of accounts in a bank, but it was collected 3 years ago, it's almost certainly incorrect now!

Completeness:

If you only have part of the information then it is worthless!

If you have a list of books in a library but half the books aren't on it, we have no useful information.

Oliver Boorman-Humphrey

Page 131 - Slide_62.png

Quality of Information

Presentation:

If the information is not presented in a way that you can understand it loses value.

Oliver Boorman-Humphrey

Page 132 - Slide_63.png

Quality of Information

Presentation:

If the information is not presented in a way that you can understand it loses value.

If you have just a page of statistics but they are have no labels, then it has no meaning!

Oliver Boorman-Humphrey

Page 133 - Slide_64.png

Quality of Information

Presentation:

If the information is not presented in a way that you can understand it loses value.

If you have just a page of statistics but they are have no labels, then it has no meaning!

Level of Detail:

The volume of data determines whether you have enough to make a decision or too much

Oliver Boorman-Humphrey

Page 134 - Slide_65.png

Quality of Information

Presentation:

If the information is not presented in a way that you can understand it loses value.

If you have just a page of statistics but they are have no labels, then it has no meaning!

Level of Detail:

The volume of data determines whether you have enough to make a decision or too much

If you have a recipe but only the ingredients are listed with no quantities, then you don't know how to bake the cake!

Oliver Boorman-Humphrey

Page 135 - Slide_66.png

Data Checking

Although it can be tricky checking quality, we should be able to check if data is *valid*, though, using data validation and verification techniques.

Oliver Boorman-Humphrey

Page 136 - Slide_67.png

Data Checking

Although it can be tricky checking quality, we should be able to check if data is *valid*, though, using data validation and verification techniques.

Data Validation

A check of entered data that is carried out by the computer to stop data that does not conform to pre-set rules being entered.

Oliver Boorman-Humphrey

Page 137 - Slide_68.png

Data Checking

Although it can be tricky checking quality, we should be able to check if data is *valid*, though, using data validation and verification techniques.

Data Validation

A check of entered data that is carried out by the computer to stop data that does not conform to pre-set rules being entered.

Data Verification

The process of ensuring that data entered into a computer matches the original paper version.

Oliver Boorman-Humphrey

Page 138 - Slide_69.png

Data Checking

Match the problem to the checking type which wish identify it.

(ロ) (西) (古) (古) (西) (田)

Oliver Boorman-Humphrey