## Logarithms



- i. Use a calculator to find the value of the following logarithms:
  - $\log_3 81$
  - $\log_2 1024$
  - $\log_{10} 200$

- $\log_7 343$
- $\log_{11} 121$
- $\log_{20} 100$
- ii. Simplify the following expressions involving logarithms into a single logarithm:
  - $\log_2 5 + \log_2 2$
  - $\log_5 9 + \log_5 2$
  - $\log_{10} 12 \log_{10} 2$
  - $\log_3 8 + \log_3 2 \log_3 4$

- $\log_x 5 + \log_x 12$
- $\log_3 x + \log_3 y$
- $\log_2 4 \log_2 2$
- $\log_8 12 \log_8 3 \log_8 4$
- iii. Express the following logarithms in the form  $a \log_b c$  where a,b,c are integers to be found:
  - $\log 5^3$
  - $\log x^2$
  - $\log_u 4^5$
  - $\log_5 xx$
  - $\log \sqrt{x}$

- log<sub>3</sub> 125
- log 36
- $\log \frac{1}{4}$
- $2\log_{10} 27$
- $\log_2 49$
- iv. Change the base of these logarithms to the base given in brackets (you don't need to calculate them):
  - $\log_6 12$  (new base: 10)
  - $\log_8 16$  (new base: 2)

- $\log_5 19$  (new base: 3)
- $\log_2 24$  (new base: 8)
- v. Rearrange the following expressions to find x:
  - $2^x = 64$
  - $6^x = 216$
  - $5 \times 5^x = 125$
  - $8^{2x} = 500$

- $10 \times 8^x = 640$
- $10^x = 300$
- $\log_3 x = 50$
- $3\log_5 x = 6$